If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2=10
We move all terms to the left:
4y^2-(10)=0
a = 4; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·4·(-10)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*4}=\frac{0-4\sqrt{10}}{8} =-\frac{4\sqrt{10}}{8} =-\frac{\sqrt{10}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*4}=\frac{0+4\sqrt{10}}{8} =\frac{4\sqrt{10}}{8} =\frac{\sqrt{10}}{2} $
| 10+4r=-8-2r | | 2x(-2x)=0 | | 0,3=5w-0,2 | | 62=8(8x+4)-2(5-6)x) | | 16+6(t-4)=28 | | 8(x-6)+58=-3(2x-8)+14x | | 16=4k/3 | | 6z+11=41 | | (x-7)/2+(x+6)/5=3/2 | | 7(n-5)=-21 | | 18k=-9 | | -3n=-75 | | 3x+21=2x-12 | | 2j+3=45 | | 8+7m=13 | | -5=a+2/10 | | -0,4=m-0,9 | | .25x+3(2x-6)=7 | | 8+4x-5-2x=5 | | 5-6y=8 | | 1/5m+4/5m=-4 | | (x-6/7)+(x+1/2)=8/7 | | 2x–3=–6x+7/ | | x-6/7+x+1/2=8/7 | | 1,5=a+2 | | 12+9y=21 | | 0,5+a=2,5 | | 0,5+a=2,58 | | 4q+8=–10+6q | | 4/3-7=1/3x+8 | | 32/7x+4/7+5x=209/14 | | 12(x+12)=4x+12 |